Start-365.ru

Работа и Занятость
16 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Биомеханика и медицинская инженерия

Биомеханика и медицинская инженерия

Содержание

О программе [ править ]

Направление: 01.03.03 «Механика и математическое моделирование»

Цель программы: подготовка бакалавров, обладающих обширными знаниями в общих областях математики и механики, современных вычислительных методов и информационных технологий; знаниями и умениями, ориентированными на решение задач биологии.

Общая концепция подготовки основана на сочетании большого количества дисциплин фундаментальной направленности с курсами, дающими представление о современных методах и приборах, применяемых для измерений в области биологии и физиологии, вычислительных методах и компьютерных пакетах программ для решения широкого круга задач на стыке механики и биологии.

Характер и уровень подготовки выпускников позволяет им продолжить обучение в магистратуре данного направления или выбрать другой образовательный маршрут.

Условия обучения [ править ]

Нормативный срок освоения основной образовательной программы подготовки бакалавра при очной форме обучения 4 года. Обучение производится на бюджетной и контрактной основе.

Квалификация, присваиваемая выпускникам: бакалавр.

Основные дисциплины [ править ]

  • Физика
  • Численные методы
  • Теоретическая механика
  • Математический анализ
  • Биомеханика
  • Вычислительная биомеханика
  • Численные методы решения биомеханических задач.
  • Химия
  • Основы механики сплошной среды
  • Информатика
  • Динамика твердого тела
  • Математическая физика
  • Механика живых систем и биоматериалов
  • Теория упругости
  • Тензорная алгебра и тензорный анализ (см. пособие)
  • Колебания в биологических системах
  • Основы термодинамики биосистем
  • Методы анатомофизиологических исследований

Преподаватели программы [ править ]

Доля преподавателей, имеющих ученую степень и/или ученое звание, в общем числе преподавателей, обеспечивающих образовательный процесс по данной образовательной программе, составляет более 70 процентов, ученую степень доктора наук имеют не менее 10 процентов преподавателей.

Места возможной практики [ править ]

  • СЗФМИЦ им. В.А. Алмазова;
  • Научно-исследовательская лаборатория нано-микросистемной техники СПбПУ;
  • ЦНИИ РТК;
  • Институт имени Поленова, отдел нейрохирургии детского возраста;
  • ВОЕНМЕХ, научно-исследовательская лаборатория нейросетевых технологий;
  • Медицинские и реабилитационные учреждения, диагностические центры;

Лаборатории [ править ]

1. Лаборатория кафедры «Теоретическая механика»: суперкомпьютеры, 3D-модели кристаллических структур, модели машин и механизмов

2. Фаблаб Политех: станки с ЧПУ, 3D-принтеры, лазерные резаки и граверы, режущий плоттер

3. Студия «Фотомеханика«: оборудование для высокоскоростной фото- и видеосъемки

Информационно-методическое обеспечение [ править ]

Кафедра располагает собственной библиотекой, содержащей учебные пособия и монографии по направлению подготовки, разработанные преподавателями кафедры. Интернет-ресурсы доступны по компьютерной сети кафедры. Учебный процесс обеспечивается библиотечным фондом Фундаментальной библиотеки СПбПУ. Применяются технологии дистанционного обучения через портал дистанционных образовательных технологий. Все дисциплины бакалавриата будут использовать сайт на wiki-технологии для обмена наработками, контроля учебного процесса, выкладывания материалов и пособий, обсуждений.

Возможные места трудоустройства [ править ]

  • Siemens AG
  • Samsung Electronics Co
  • СЗФМИЦ им. В.А. Алмазова
  • НИДОИ им. Г.И. Турнера
  • Институт эволюционной физиологии и биохимии им.И.М. Сеченова РАН
  • НИИ промышленной и морской медицины Федерального медико-биологического агентства
  • ЗАО «Транзас»
  • Группа “Энергомаш”
  • Машиностроительный завод «Арсенал»;
  • ПЛАЗ АЭРО;
  • Pratt&Whitney
  • CORNING (Научный центр Корнинг);
  • КБСМ (Концерн ПВО «Алмаз-Антей»);
  • ЦНИИ им.акад.А.Н.Крылова;
  • ЦНИИ «Прометей»;
  • Институт Стройпроект
  • ВНИИГ им.Б.Е.Веденеева;
  • ABBYY,
  • ООО «Актион-Диджитал»;
  • Clodo
  • и др.;

Поступление [ править ]

Заинтересованным в обучении по программе бакалавриата «Биомеханика и медицинская инженерия» просьба обращаться к зам. зав. каф. «Теоретическая механика» Ольге Сергеевне Лобода.

Биоинженер: плюсы и минусы профессии

В мире современных технологий все больше появляется наук и профессий, которые находятся на стыке нескольких дисциплин, поскольку потребности современного общества уже не могут быть удовлетворены стандартными технологическими процессами. Биоинженер как раз и является такой профессией, которая соединяет в себе базовые знания и современные технологии. Из статьи вы узнаете об особенностях специальности, предполагаемых местах работы, плюсах и минусах специальности, а также о том, какая зарплата у биоинженера.

Общие сведения

Биоинженер – специалист, который целенаправленно занимается изменением свойств живого организма. Профессия подходит тем людям, которые интересуются химией и биологией. Биоинженерия – одно из современных направлений современной науки. Это интегральная наука, она возникла на стыке физики, химии, биологии, генной инженерии и компьютерных технологий.

Биоинженеры работают с живыми организмами и системами, применяют в своей работе передовые технологии и достижения науки для решения медицинских проблем. Специалисты участвуют в разработке и создании новых приборов и оборудования. Также они участвуют в разработке новых процедур, опираясь на междисциплинарные знания. Таким образом появляются новые технологии, способны облегчить жизнь людей.

Не путайте биоинженерию с генной инженерией. Генная инженерия занимается изменением ДНК живых организмов, и является всего лишь ответвлением биоинженерии. Дисциплина направлена на углубление уже существующих знаний в области инженерии, биологии и медицины для укрепления здоровья людей за счет научных разработок.

Важными достижениями науки является разработка искусственных суставов, современных протезов, магниторезонансной томографии, кардиостимуляторов, артроскопии, ангиопластики, биоинженерных протезов кожи, почечного диализа, аппаратов искусственного кровообращения. Все это тесно переплетается с биотехнологиями и приносит пользу человечеству.

Профессионал должен обладать такими важными качествами:

  • хороший интеллект;
  • аналитический пытливый ум и склонность к естественным наукам;
  • уметь анализировать и находить практическое применение известным теоретическим и полученным в ходе собственных исследований данным;
  • знать принципы обращения с лабораторной и исследовательской техникой, основ хранения веществ, реактивов;
  • уметь составлять отчеты о проделанной исследовательской деятельности.

Положительные стороны профессиональной деятельности:

  • высокая заработная плата (но учтите что сразу после ВУЗа вы не будете получать максимальный оклад);
  • высокая востребованность на рынке труда квалифицированных специалистов;
  • карьерный рост;
  • возможность проводить на работе исследования, нужные для ваших научных интересов;
  • сотрудничество с международными холдингами и проектами;
  • возможность стажировки за границей.
  • сложное обучение в ВУЗе;
  • высокая ответственность за разработки;
  • работа с опасными химикатами;
  • не всегда работа происходит в чистой и уютной лаборатории;
  • возможный ненормированный рабочий день;
  • одна ошибка может завалить проект всей команды;
  • возможные неудачи во время разработок;
  • получение не таких результатов, как вы ожидали;
  • моральное напряжение.

Обязанности

В первую очередь у работника должно быть высшие профильное образование, превосходные знания по биологии, физике, химии и генетике, владение иностранными языками и умение работать с компьютерной техникой.

Главная задача специалиста – разработка современных технологий в биологии и медицине для решения проблем охраны здоровья. Специалист обязан работать над способами изменения свойств живых организмом, разработкой искусственных органов, разработкой генно-модифицированных организмов. Специалист обязан относится к своей работе ответственно, ведь от этого зависит жизнь и здоровье людей. Биоинженер занимается разработкой новых лекарственных препаратов.

Благодаря их стараниям появились такие лекарства, как инсулин, гормон человеческого роста, интерферон, вакцина против гепатита B. Дополнительно специалист должен заниматься синтезом эффективных биокатализаторов, применяемых в промышленности, созданием микроорганизмов, способствующих оперативной утилизации отходов.

Читать еще:  Где учат на инженера проектировщика

В спектр должностных обязанностей также входит:

  • генная селекция продуктов питания;
  • планирование рабочего процесса;
  • наблюдения за подопытными объектами;
  • фиксация полученных в ходе эксперимента данных и дальнейшая их обработка;
  • подготовка нужных материалов и технического оснащения;
  • соблюдения правил ТБ на рабочем месте.

Место работы

В первую очередь биоинженер – это научный сотрудник, и поэтому работать он может в различных исследовательских институтах, центрах и университетах. Помимо научных исследований специалист занимается преподаванием в учебных заведениям. Прекрасная возможность для карьерного роста – это проводить исследования в рамках международного проекта или гранта для крупных компаний, выделяющих для этого приличное финансирование. В некоторых случаях штатного биоинженера нанимают компании и корпорации, деятельность которых относится к сельскому хозяйству или медицине.

Устраиваясь на работу, специалист должен знать ключевые азы в области биологии, химии, физики и генетики. Также будущий работник должен владеть английским языком, так как во время работы придется общаться с иностранными коллегами, спонсорами и работодателями. Во время работы нужно будет посещать международные конференции, симпозиумы в качестве слушателя и докладчика, так что без знания английского языка никак не обойтись. Вам обязательно нужно уверенно владеть компьютером, специальным оборудованием и техникой. Также знать правила хранения реактивов, лекарств и препаратов.

Обучение

Получить образование по специальности “Биоинженерия” можно во многих образовательных учреждениях. В общем для абитуриентов доступны 53 ВУЗа, в которых для обучения студентов используется двенадцать разных программ. Для поступления в ВУЗ абитуриент должен сдать ЕГЭ по биологии, химии, физике. Выбор программы зависит от уровня учебного заведения, профиля, материально-технической базы и будущей специальности, которую получат студенты.

  • МГУ им. М.В. Ломоносова;
  • МГМУ им. И.М. Сеченова;
  • ИТМО;
  • СПбАУ РАН;
  • Санкт-Петербургский государственный университет;
  • Военно-космическая академия имени А. Ф. Можайского Министерства обороны Российской Федерации;
  • Московский педагогический государственный университет;
  • Московский государственный гуманитарный университет имени М. А. Шолохова;
  • Московский государственный областной университет.

Длительность обучения на стационаре составляет 4 – 5 лет, в зависимости от квалификации, “бакалавриат” или “специалист”. На магистратуре обучение длится два года. По завершению обучения в магистратуре вы сможете продолжить обучение в аспирантуре и после этого заниматься научно-исследовательской работой. Обучение в аспирантуре длится три года на очном отделении, и четыре года на заочном отделении. Также доступна дистанционная форма обучения, например, в университете С.Ю. Вите.

Перед поступлением обязательно ознакомьтесь с характеристикой ВУЗа, его материально-техническим обеспечением, преподавательским составом, доступными специальностями для обучения. Зная как можно больше информации вы точно сможете определиться с местом учебы. Также обязательно узнайте о том, какие предметы нужно будет сдавать и какой проходной балл необходим для поступления.

Если по окончании учебы вы защитите кандидатскую диссертацию, то это будет большим преимуществом в дальнейшей работе. Со степенью кандидата проще устроиться на работу в ВУЗ, научный центр. За научную степень вам будут доплачивать дотации к зарплате согласно тарифной сетке по специальности.

Во время обучения студенты будут осваивать много дисциплин, а именно будут учиться делать такие вещи:

  • Конструировать модифицированные и новые биологические объекты;
  • Проводить эксперименты с клетками и культурами клеток;
  • Исследовать внутриклеточный транспорт токсичных молекул;
  • Изучать структурные особенности и взаимодействие макромолекул;
  • Осуществлять получение искусственных белков с заданным свойствами, синтезировать и изучать свойства таких белков;
  • Проводить различные биоинженерные исследования (культивирование клеток различного происхождения, создание генно-инженерных конструкций, клонирование и т.д.);
  • Изучать генетические маркеры выносливости и работоспособности человека;
  • Создавать компьютерные программы, которые будут использоваться в биоинженерии и биоинформатике;
  • Создавать специализированные и общедоступные биоинформационные сайты;
  • Преподавать биоинженерию, биоинформатику и другие смежные дисциплины в различных образовательных учреждениях (вузах, колледжах).

Также во время учебы студенты будут проходить разные виды практики. Учебная и производственная практики могут проходить на современных фармацевтических и биофармацевтических предприятиях, в научно-исследовательских институтах медико-биологического и химического профилей, на кафедрах и в лабораториях вузов.

Обучение работника продолжается и на рабочем месте. Это происходит в виде производственной практики, посещении курсов повышения квалификации, посещении семинаров, на научно-практических конференциях и симпозиумах. Все это поможет повысить уровень квалификации, что в будущем отобразится на профессиональном росте и размере заработной платы.

Заработная плата

Заработная плата начинающего специалиста или аспиранта в государственном НИИ $160-350 в месяц. В лаборатории, которая финансироваться за счет грантов, получает в среднем $950-1300. Если гранты отсутствуют, то оклад составляете от $200 до $450, вне зависимости от разряда единой тарифной сетки. В отечественной компании молодой специалист зарабатывает в среднем $500-700 в месяц, а квалифицированный биоинженер от $1500 до 3000. Заработок специалистов в иностранных корпорациях составляет несколько тысяч долларов.

Размер заработной платы зависит от квалификации специалиста, его трудового стажа, места работы и региона страны. Чем выше степень и значимость учреждения, где работает человек, тем выше заработная плата. Значение имеет также уровень учреждения на уровне страны и международных компаний. Те люди, которые сотрудничают с зарубежными партнерами, получают больше, нежели те, что финансируются за счет государственного бюджета.

Теперь вы знаете основы о профессии биоинженера, и сможете выбрать подходящее место работы с достойной оплатой труда.

Биоинженерия и биомедицинская инженерия 2020

Вступление

Инжиниринг — это применение физико-математических наук, чтобы создавать, проектировать и внедрять структуры, процессы и инструменты, чтобы сделать жизнь человека более комфортной и простой. В последние годы изучение техники далее подразделяется на отдельные дисциплины в зависимости от принципа и материала, который используется для создания нового изобретения. Из-за этого биологическая инженерия и биомедицинская техника появились как новые рубежи в области техники. Биологическая инженерия и биомедицина — это высокоразвитые науки, которые помогли сформировать современный мир, в котором мы живем. Эти области способствовали продвижению в области биологических наук и медицинских наук.

биоинженерия

Биоинженерия также известна как биологическая инженерия, разработка биологических систем и биотехнологическая инженерия. Это дисциплина, которая изучает применение принципов и методов математики, химии, физики и компьютерных наук для анализа и разработки новых процессов или инструментов для преодоления пробелов в науках о жизни. Для некоторых экспертов в области биоинженерия представляет собой широкую специализацию, которая охватывает биомедицинскую инженерию, медицинскую инженерию и биохимическую технику. По сравнению с биомедицинскими инженерами, биоинженеры сосредоточены на создании новых продуктов, таких как фармацевтические продукты, пищевые добавки, консерванты, биоинновация и энергия на основе биомассы, используя основные концепции и процессы в биологической науке. В инновациях и разработке новых продуктов используются фундаментальные инженерные принципы, такие как термодинамика, кинетика, методы разделения и очистки, полимерная наука, механика жидкости, тепломассоперенос и поверхностные явления. Биоинженерия далее подразделяется на следующие специальности: Пищевая и биотехнологическая инженерия, сельскохозяйственная техника и инженерия природных ресурсов.

Читать еще:  Диплом кадастрового инженера

Продовольственная и биологическая технология

Это специальность биоинженерии, которая фокусируется на понимании базового применения технических принципов для пищевых процессов. Под этой отраслью включены следующие специальности: Микробиологическая инженерия, Пищевая промышленность и Биоэнергетика. Примеры исследований в области пищевой промышленности включают явление переноса тепла и массы в пищевых системах, энергосбережение посредством модификаций в пищевой промышленности и динамики биоматериалов.

Агротехника

Сельскохозяйственная инженерия — это применение фундаментальных принципов техники для эффективного производства и переработки пищевых продуктов, волокон и биотоплива. Эта специальность дополнительно подразделяется на изучение систем сельскохозяйственных машин и машин, структурного проектирования и анализа, экологических наук, биологии растений, почвоведения и животноводства. Сельскохозяйственные инженеры разрабатывают сельскохозяйственные методы и инструменты, что повышает производительность и урожай в области сельского хозяйства.

Природные ресурсы

Природно-ресурсная инженерия применяет фундаментальные принципы проектирования для защиты окружающей среды и природных ресурсов от возможной деградации и загрязняющих веществ. Инженеры по природным ресурсам изучают проектирование водного и почвенного покрова, рекультивацию рекультивации, биоремедиацию, ливневую воду и установку контроля эрозии, наземные системы удаления отходов и моделирование водораздельных систем.

Биомедицинская инженерия

Биомедицинская инженерия использует фундаментальные принципы биологических наук, медицинских наук и техники для улучшения здоровья человека. Интегрирует инженерные науки с биомедицинскими науками и клинической практикой. Эта дисциплина связана с пониманием и приобретением новых знаний о живых системах посредством аналитических и экспериментальных методологий, основанных на технических принципах. Кроме того, биомедицинская инженерия фокусируется на производстве новых систем, инструментов и процессов, которые улучшают дисциплину медицины и биологии для лучшей доставки качественного медицинского обслуживания.

Филиалы биомедицинской техники

Биомедицинская инженерия имеет несколько поддисциплины: системная биология и биоинформатика, физиологическое моделирование, биомеханика, биомедицинская аппаратура и биомедицинские датчики, биомедицинская визуализация, биомолекулярная инженерия, биотехнология и искусственные органы. Системная биология и биоинформатика фокусируются на моделировании новых сотовых сетей, анализе последовательности ДНК и технологии микрочипов. Физиологическое моделирование изучает физиологию возбудимых клеток, динамику микроциркуляции, модели клеточной механики и фармакокинетические модели лекарств. Биомеханика включает инновации протезных суставов и конечностей и изучение анализа походки. Биомедицинские приборы и биомедицинские датчики изучают клинические мониторы, такие как эхокардиограмма, датчик кислорода, глюкометры и кардиостимуляторы. Биомедицинская визуализация связана с радиографической визуализацией, оптической визуализацией, компьютерной томографией и магнитно-резонансной томографией. Биомолекулярная инженерия и биотехнология изучают системы доставки лекарств, белковую инженерию, вакцины, тканевую инженерию и методы разделения. Искусственные органы изучают дизайн биоматериалов, которые могут быть использованы для создания новых органов или систем, которые имитируют его функцию.

Заключение

Биоинженерия и биомедицинская инженерия являются двумя важными достижениями в области науки и техники. Обе эти науки используют основные инженерные принципы, которые включают использование анализа и систематических процессов при разработке новых материалов, которые помогут решить основные проблемы в науках о жизни. Однако эти дисциплины различаются в фокусе. Биоинженерия — это более широкая область исследований, которая включает биомедицинскую инженерию в пределах своей сферы. Биоинженерия фокусируется на применении техники для биологических процессов, пищевых продуктов, сельского хозяйства и экологических процессов. С другой стороны, биомедицинская инженерия сосредоточена на применении техники для биологических и медицинских наук для улучшения систем доставки медицинских услуг. По сравнению с биоинженерией, биомедицинская инженерия имеет более сложные подразделения, которые фокусируются на области исследований частиц в целях улучшения здоровья человека.

БИОМЕДИЦИНСКАЯ ИНЖЕНЕРИЯ

БИОМЕДИЦИНСКАЯ ИНЖЕНЕРИЯ, разработка и применение технических устройств для биологических и медицинских исследований. Это область совместной работы технологов, биологов и врачей, направленной на приобретение фундаментальных знаний о физических характеристиках и функционировании биологических материалов. Полученные знания используются этими учеными для того, чтобы создавать устройства, делать операции и разрабатывать новые методики, способствующие улучшению здоровья и качества жизни людей.

В числе достижений биомедицинской инженерии, ставших возможными благодаря такому сотрудничеству, – диализные аппараты, предназначенные для замещения больных и плохо работающих почек; протезы тазобедренного и коленного суставов; материалы и технологии для операций на сердце и кровеносных сосудах; искусственное сердце.

ОСНОВНЫЕ ОБЛАСТИ ИССЛЕДОВАНИЙ

Компьютерное моделирование в биомеханике.

Роль компьютерного моделирования в биомедицинской инженерии трудно переоценить. На основе количественных данных исследований программист создает модели биологических процессов и структур; соответствующие программы могут предсказать поведение биологической структуры, системы или организма в зависимости от внешних воздействий, лечения, развития болезни или старения.

Компьютерные модели способны приблизительно описать механику работы различных частей тела, например бедренной кости в области тазобедренного сустава, или же они могут описать, каким образом замена головки берцовой кости на искусственную повлияет на функционирование кости в целом. Можно использовать моделирование и для анализа возможных изменений в конструкции протеза, а также связанного с ними риска для больного. Однако важнее всего то, что компьютерное моделирование позволяет избежать проведения экспериментов на людях.

Биоматериалы и биомеханика ткани.

В отличие от специалистов по моделированию многие инженеры-биомедики имеют дело непосредственно с биологическими тканями – мышцами, связками, сухожилиями – и даже клеточными мембранами. Чаще всего их работа связана с измерением физических параметров (таких, как прочность, жесткость, упругость) или функциональных показателей (электрической активности, количеств выделяемого вещества, осмотического давления в клетках и т.п.). Подобные измерения важны не только для фундаментальной науки; они создают основу для практически важных разработок, одним из примеров которых служит искусственное сердце.

Биомеханика

изучает в основном механические свойства опорно-двигательного аппарата. Фундаментальные исследования в этой области послужили базой для разработки искусственных суставов, которые применяются для замены суставов, необратимо поврежденных в результате тяжелого артрита или артроза. Это изобретение, уже облегчившее страдания тысячам людей, может быть, самое впечатляющее достижение биомедицинской инженерии.

Читать еще:  Вузы где учат на инженера

Имплантация (эндопротезирование).

В 1937 пригодными для имплантации были признаны три типа металлических материалов – нержавеющая сталь марки 316-L, хромо-кобальто-молибденовый сплав (виталлий) и титан. Эти материалы достаточно прочны, долговечны, устойчивы к коррозии и не вызывают серьезных воспалительных реакций в организме.

С их появлением в практику травматологии быстро вошли разнообразные фиксаторы (стержни, пластинки, винты и гвозди), предназначенные для закрепления костей в правильном положении до тех пор, пока не восстановится костная ткань. Большинство подобных фиксаторов было разработано в те годы, когда механика костей и мягких тканей была изучена слабо и отсутствовали данные о том, каким нагрузкам подвергается имплантат в организме. Современные фиксаторы для срастания переломов значительно эффективнее; возникающие в них напряжения и деформации рассчитываются заранее. Благодаря современным фиксирующим устройствам пожилой человек с переломом шейки бедра часто снова начинает ходить практически через неделю после травмы.

Несмотря на огромный успех в области эндопротезирования тазобедренного и коленного суставов, срок службы этих протезов ограничивался примерно 10 (максимум 20) годами. Это определялось двумя факторами: ослаблением креплений элементов протеза и недостатками метилметакрилатного костного цемента. Поиск более надежных способов фиксации дал свои результаты: появились металлические протезы как с пористой поверхностью, так и с покрытием из фосфата кальция в форме гидроксиапатита, который имитирует поверхность кости. Благодаря пористой структуре наружного слоя протеза кость врастает в поверхность протеза и стабилизирует его до конца жизни пациента. Покрытие металлического протеза гидроксиапатитом имитирует нормальную кость, что способствует более физиологичному и долговечному соединению протеза с костью.

Биоэлектрическая инженерия.

Различные ткани, в т.ч. костная ткань, генерируют электрические импульсы. Подобный пьезоэлектрический эффект играет важную роль в формировании костей взрослого человека. Кроме того, он влияет на скорость и прочность срастания костей.

Биоэлектрические явления все чаще пытаются использовать для более эффективного лечения переломов. Например, вблизи несрастающегося перелома имплантируют электроды и пропускают слабый электрический ток, который проходит через ткань в месте имплантации. Такой подход позволяет добиться правильного срастания даже в тех случаях, когда обычные способы лечения не приносят успеха (см. также БИОЭЛЕКТРИЧЕСТВО).

ИСТОРИЧЕСКИЙ ОЧЕРК

Рождение биомеханики.

В 1940-х годах шведский ортопед К.Хирш впервые начал применять специальные приборы и датчики для измерения физических характеристик опорно-двигательного аппарата человека. Работы Хирша и его учеников легли в основу биомеханики – одной из главных областей биомедицинской инженерии.

Результаты проведенных Хиршем экспериментов имели колоссальное значение. В частности, оказалось, что силы, действующие на бедренный сустав в поперечном направлении, примерно одинаковы независимо от того, поднимает ли человек ногу, чтобы перевернуться в постели, или ходит. Поэтому сегодня пожилым людям с переломом шейки бедра после установки фиксатора перелома (гвоздя) разрешены прогулки. А ведь совсем недавно они были обречены на длительный постельный режим, который часто приводил к пневмонии, тромбозу и другим осложнениям со смертельным исходом.

Полученные Хиршем данные позволили подобрать более прочные материалы для искусственных суставов, разработать элементы более долговечных протезов, а также специальные гвозди для бедренных фиксаторов, которые позволяют больному еще при срастании перелома шейки бедра полностью опираться на больную ногу. Кроме того, эти данные помогают врачу научить больного, как лучше пользоваться костылями или тростью.

Разработка приемной полости протеза.

После Второй мировой войны группа ученых из Калифорнии параллельно с Хиршем искала пути улучшения протезов для солдат, перенесших ампутацию ног. С помощью киносъемки и анализа движений ученые смогли предсказать, какие нагрузки и какое давление со стороны протеза может испытывать культя. Именно эти методы и помогли им в конце концов разработать улучшенную конструкцию приемной полости протеза, которая находится в постоянном контакте с культей. Новый тип протеза удобен и носится много часов подряд, не причиняя вреда коже.

Протезы тазобедренного и коленного суставов.

В 1963 английский врач Дж.Чарнли создал полный протез тазобедренного сустава и шейки бедра с чашеобразной приемной полостью в области таза и металлическим шаром и стержнем, заменяющими верхнюю часть бедренной кости. Однако трение между частями протеза препятствовало нормальной ходьбе. Чарнли определил, что для решения проблемы нужно выполнить два условия: элементы протеза должны прочно фиксироваться в костях больного, а трение между рабочими частями протеза должно быть очень мало. Он добился успеха, применив новый цементирующий материал – метилметакрилат, который и до сих пор используется как стандартный костный цемент. Чуть позже Ф.Ганстон, опираясь на работу Чарнли, сконструировал протез коленного сустава. В настоящее время протезы тазобедренного и коленного суставов служат по 10–15 лет.

Искусственное сердце.

Аппараты типа «искусственное сердце» уже вошли в медицинскую практику, хотя пока они еще не могут полностью заменить настоящее сердце. Для того чтобы искусственное сердце могло быть использовано в качестве постоянно работающего аппарата, оно должно: 1) иметь небольшие размеры; 2) обеспечивать достаточный выброс крови; 3) регулировать выброс в зависимости от нужд организма; 4) легко подвергаться стерилизации; 5) изготовляться из долговечных материалов; 6) прокачивать кровь без резких толчков, чтобы избежать разрушения эритроцитов (гемолиза). Пока ученые разработали лишь устройства, заменяющие две нижних камеры сердца (желудочки). При имплантации их соединяют с двумя верхними камерами (предсердиями), предварительно удалив заменяемые желудочки.

Первую имплантацию искусственного сердца человеку произвел в 1969 Д.Кули в США. Аппарат работал 64 ч, пока не было найдено человеческое сердце для пересадки. Долговременная имплантация искусственного сердца была впервые выполнена 2 декабря 1982 хирургами Медицинского центра при Университете Юты, США. Использовался аппарат Джарвик-7, названный так в честь его изобретателя Р.Джарвика. Этот аппарат был изготовлен из формованного полиуретана, укрепленного на алюминиевой рамке, причем в основании каждой камеры была растягивающаяся резиновая мембрана. Обе мембраны соединялись с внешним насосом двумя шлангами, проходящими через брюшную полость больного. Насос подавал сжатый воздух, под давлением которого резиновые мембраны выталкивали кровь через искусственные клапаны в кровеносную систему. Больной, которому была произведена имплантация, Барни Кларк, прожил 112 дней; за это время искусственное сердце совершило 13 млн. ударов. Вероятно, в будущем в искусственное сердце будет встраиваться электрический насос, питающийся от закрепленного на поясе аккумулятора. См. также СЕРДЦЕ.

Ссылка на основную публикацию
Adblock
detector
×
×